Observations on Gas Permeability Measurements under HPHT Conditions in Core Materials Exposed to Cesium Formate Brine




Download Your Copy

We respect your privacy, by submitting this form you agree to having your details passed onto the sponsor who may promote similar products and services related to your area of interest. For further information on how we process and monitor your personal data click here.

Natural gas in its native environment is in thermodynamic equilibrium with the connate liquid water phase and will be saturated with water vapour at reservoir conditions. Full water saturation of gases used in laboratory core flooding tests may not always be achieved, and it is known that the use of dry gas in such experiments can artificially reduce core permeability to gas by dehydrating and crystallising any brine residues left within the cores.

This problem of permeability impairment, as a result of water vaporisation by gas, might be expected to become more acute or evident in laboratory tests with high-pressure high-temperature (HPHT) reservoir cores containing high salinity formation brine and high-density completion brine filtrates. These brines may contain salt concentrations that are already close to saturation levels and are more susceptible to crystallisation by dehydration.

The objective of the work described in this paper was to look at the effect of gas humidification levels on the gas permeability of North Sea HPHT reservoir core material exposed to high-density cesium formate brine under HPHT conditions in laboratory core flooding experiments. The results from core flooding experiments at 200oC (392oF) indicated that full HPHT-humidification of the gas phase resulted in a higher gas return permeability when compared with a test using gas humidified at room temperature and high pressure. This finding highlights the importance of ensuring that any gases used in HPHT core flooding tests are fully saturated with water vapour at the test temperature and pressure. It seems likely that the impact of gas humidification levels will be amplified in very low permeability cores subjected to high drawdown pressures.

LEARN MORE:

Have Your Say
Rate this feature and give us your feedback in the comments section below
TO READ THE FULL STORY